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Based on the transverse-longitudinal mapping of Bessel beams, we propose a simple method to construct a self-similar
Bessel-like beam whose transverse profile maintains a stretched form during propagation. Specifically, the propagating-
variant width of this beam can be flexibly predesigned. We experimentally demonstrate three types of self-similar Bessel-
like beams whose width variations are linear, piecewise, and period functions of propagation distance, respectively. The
experimental results match well with the theoretical predictions. We also demonstrate that our approach enables the
generation of self-similar higher-order vortex Bessel-like beams.
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1. Introduction

Since the Bessel beam was proposed as an exact solution of
propagation-invariant mode to the Helmholz equation[1,2] by
Durnin in 1987, it has attracted a great deal of research interest.
Due to its properties of nondiffraction and self-healing[3], the
Bessel beam has been widely used in the fields of free-space
optical interconnects and communications[4,5], optical capture
and particle manipulation[6,7], optical micro-nanomachining[8],
optical microscopic imaging[9,10], and femtosecond laser
processing[11]. In addition, the Bessel beam shows more poten-
tial for applications in spatiotemporal light bullets, beam align-
ment, plasma channels, to name but a few.
Recently, the manipulation of Bessel beams has become an

issue of fundamental importance. Many novel behaviors have
been developed successively based on the properties of Bessel-
like beams. Specifically, employing the transverse-to-longi-
tudinal and spectrum-to-distance mapping of Bessel beams,
researchers have proposed somemethods to generate Bessel-like
beams with propagation-variant polarization[12] or arbitrary tra-
jectories[13–17]. Taking advantage of the dependence of the beam
on-axis evolution on the spatial spectrum, it is possible to engi-
neer the axial intensity[18] and polarization[19] of Bessel beams.
The linear Gouy phase shift[20] of Bessel beams has also been
used to realize propagation-variant polarization[21,22]. In addi-
tion, many special structured beams such as helical beams[23–25]

have been constructed by superposing multiple Bessel beams.

On the other hand, researchers have also worked to obtain the
self-similar solutions of propagating modes in free space, where
they can maintain their transverse profiles under specific
stretching during propagation. The most two typical examples
are Laguerre–Gaussian beams[26] and nondiffracting Bessel
beams[1,2]. A few years ago, Xie et al. proposed a class of self-sim-
ilar beams with different scaling factors by solving the paraxial
wave equation[27,28]. The exact solutions of self-similar Bessel
beams can be acquired, but there are still restrictions on the scal-
ing factors. Recently, Efremidis et al. showed the self-similar
arbitrary-order Bessel-like beams under tunable stretching
transformations based on the Fresnel integral[29]. The related
works either have restrictions in scaling factors or require com-
plicated integral calculations.
In this paper, we propose a new method to construct an arbi-

trary self-similar Bessel-like beam more straightforwardly by
employing the transverse-longitudinal mapping. This method
enables the predesigning of the beam width during propagation
for both zeroth- and higher-order Bessel-like beams by radially
tuning the wave vector cone of the Bessel beam. Through exper-
imentation, we observe these self-similar Bessel-like beams with
different width-changing functions, and the experimental
results meet our expectations. The proposed method is more
intuitive and easier to realize and supports the point-to-point
controlling of the beam width. It would be of benefit for explor-
ing applications in optical manipulation of microparticles and
optical imaging.
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2. Theory

Let us start with the general scalar expression for propagation-
invariant Bessel fields,

U�r,φ, z� = exp�ikzz�Jm�krr� exp�imφ�, (1)

where �r,φ, z� denotes the cylindrical coordinate,m is the topo-
logical charge, and kr and kz denote the transverse and longi-
tudinal wave vectors, meeting k2r � k2z = k20 and k0 = 2π=λ. In
k-space, the wave vector locates on a cone, with the radius
and the slant height being kr and k0, respectively

[30]. We first
focus on the case of m = 0 [i.e., the zeroth-order Bessel mode
J0�krr��. The beam width is mainly determined by the transverse
wave vector kr . The full width at half-maximum (FWHM) of the
central peak is approximately W ≈ 2.25=kr

[31]. Thus, kr can be
regarded as the proportion coefficient of the Bessel beam. To
generate a self-similar beam of which the beam width is
stretched during propagation, it is ideal to change the transverse
wave vector along propagation,

kr�z� ≈
2.25
W�z� : (2)

To freely control the transverse wave vector of a beam during
propagation, we can take advantage of the transverse-longi-
tudinal mapping of the Bessel beams[13,32]. Considering that
the Bessel beam can be generated by an axicon, we assume that
there exists a special axicon segmented by a series of annulus
with radius ri (i is the serial number), each of which has a differ-
ent apex angle [corresponding to transverse wave vector kr�ri��,
as shown in Fig. 1(a). Light rays from the annulus (ri → ri�1)
focus to the band (zi) on the axis and generate a Bessel beam
with width 2.25=kr�ri�. If the axicon has a continuously varied
apex angle of which the transmission function is expressed by
exp�−iΦ�r��, the transverse wave vector would become a con-
tinuous function of the radial coordinate, and then we would
get a Bessel beam with longitudinally varied beam width

[see Fig. 1(b)]. Note that the kr�z� at distance z is determined
by kr�r� at the corresponding radius r on the input plane.
There is a one-to-one relationship between the radius r and
distance z according to the transverse-longitudinal mapping,
meeting

r
z
=

kr�r����������������������
k20 − k2r �r�

p : �3�

By combining Eqs. (2) and (3), we can easily obtain the one-
to-one correspondence between the beam widthW�z� along the
propagation axis and the transverse wave vector distribution
kr�r� at the input plane, while for kr�r�, it denotes the transverse
phase gradient, meeting kr�r� = dΦ�r�=dr. Then, we can infer
the initial axicon phase Φ�r� to generate the self-similar
Bessel-like beam by the integration

Φ�r� =
Z

kr�r�dr: (4)

Thus, the input zeroth-order Bessel-like beam can be
expressed as

U�r� = J0�Φ�r��: (5)

The subsequent self-similar field can be evolved. It is important
to point out that the subsequent propagation field at distance z
follows the Bessel profile J0�kr�z�r�, rather than the expression
of Eq. (5).
Notably, the precondition of the above one-to-one correspon-

dence is that the rays from the expanding concentric circles can-
not intersect with each other. Namely, the focal distance z of the
rays from a circle should increase with the circle radius r, meet-
ing r

0 �z� > 0. Combined with Eqs. (2) and (3), we obtain a con-
straint on the beam width function of the self-similar Bessel-like
beam,

W�z� − zW
0 �z� > 0, (6)

which is consistent with the conclusion in Ref. [29]. Moreover,
according to themapping, there is a limitation on the self-similar
propagation length due to the finite aperture of the input beam.
Theoretically, for a circular aperture R, the propagation length
zmax can be given by

zmax =
R

�����������������������
k20 − kr�R�2

p
kr�R�

: �7�

3. Results and Discussion

First, we provide a simple example to demonstrate the feasibility
of this method. Assuming a linearly varying beam width with
W�z� = Az � B, Eq. (6) is satisfied as long as B > 0. The axicon
phase can be directly calculated by Eqs. (2)–(4),

Fig. 1. Schematic of (a) transverse-to-longitudinal mapping of Bessel beam
and (b) generation of self-similar Bessel-like beam.
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Φ�r� = 2.25
B

r −
Ak0
2B

r2: (8)

To verify the self-similar propagation of this beam, we employ
the experiment setup containing a spatial light modulator to
generate a phase-type hologram, which can encode both the
amplitude and the phase into the input beam[33,34]. A collimated
linearly polarized laser beam (He–Ne laser, 632.8 nm) is set as
the input beam, and the propagation process of the beam is
detected in the same way as in our previous work[13].
By setting the parameters A = 2 × 104 and B = 50 μm in

Eq. (8), we demonstrate the zeroth-order Bessel-like beam
J0�F�r��with linearly varying FWHMas depicted in Fig. 2, where
Figs. 2(a) and 2(b) depict the simulated and experimental propa-
gation processes in the x–z plane, respectively. The predesigned
beam width is marked by the black dashed lines, which match
well with the beam profile. Specifically, the green dashed lines
in Fig. 2(a) display the schematic rays to manifest the trans-
verse-to-longitudinal mapping. It can be seen that the angle
of the ray decreases during the propagation and produces an
increasingly larger spot. Figure 2(c) shows the comparison of
the experimentally measured FWHM (error bar) with the pre-
designed line (red dashed line) and the simulation result (blue
dashed line). The experimental data are derived from the aver-
age FWHMof four different cross sections, as shown in the inset
of Fig. 2(c). From these results, we can see that the experimen-
tally measured FWHM (50–90 μm) has an absolute error of less
than 3 μm. This error is acceptable, given the inevitable distor-
tion of the beam profile generated in experiment. Figures 2(d)–
2(f) show the intensity cross sections at different propagating
distances, referring to the theoretical Bessel mode (red solid
lines). They obviously show that the beam maintains classic zer-
oth-order Bessel modes with the FWHM changes during propa-
gation. These results perfectly represent the self-similar
characteristics of the produced beam.

In addition, the transverse-longitudinal mapping of the Bessel
beam shows a bigger advantage in controlling the beam width
because the points along the propagation axis are independently
modulated to a certain extent. This allows for creating an arbi-
trary function of the beam width variation, including the piece-
wise function spliced with several different sections. In practical
applications, it is essential to obtain a beam with a fixed width
and stable propagation. Thus, we can stop changing the beam
width after it reaches a certain value, by setting the beam width
variation as

W�z� =
�

Az � B �0 ≤ z < z0�
Az0 � B �z ≥ z0� , (9)

where z0 is the turning point. The corresponding phase can be
obtained,

Φ�r� =
�

2.25
B r − Ak0

2B r
2 �0 ≤ r < r0�

kr0r �Φr0 �r ≥ r0�
, (10)

where kr0 = �2.25 − Ak0r0�=B, Φr0 = Ak0r20=2B, and r0 is given
from Eq. (3) by substituting z = z0. In our experiments, we set
the parameters A = 2 × 104, B = 50 μm, and z0 = 10 cm in
Eq. (9). Figure 3 presents the experimental results, which carry
the same representation as Fig. 2. In Fig. 3(b), the white dashed
line marks the turning point z0. It is observed that the FWHM
no longer changes after z0. Hence, the beam is restored to the
nondiffracting Bessel beam J0�kr0r�. Importantly, the nondif-
fracting distance of this beam is equal to that of the Bessel beam
with transverse wave vector kr0. Figure 3(c) shows the measured
FWHM, along with the corresponding simulated and theoretical
results. These results coincide with each other. Additionally, the
beam retains a high-quality Bessel mode during propagation, as
illustrated in Figs. 3(d)–3(f).
In theory, the phase Φ�r� can be calculated by Eqs. (2)–(4)

according to the beam width function. However, it is hard to
obtain the analytical solutions for a complicated width function
W�z�. Nevertheless, it is convenient to numerically solve the

Fig. 2. Propagation process of a zeroth-order Bessel-like beam with linearly
varying beam width. (a), (b) Side view of the simulated and experimental
propagation process; (c) FWHM versus propagation distance; (d)–(f) intensity
cross sections at different propagating distances. Fig. 3. Same as in Fig. 2 but for piecewise beam width.
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phase. Here, we select a typical sinusoidal function W�z�=
A sin�2πz=T� � B, which represents an oscillated beam width.
According to Eq. (6), this type of self-similar beam is only valid
within some distance. According to Eq. (6), there is an upper
limit on the amplitude A of the sinusoidal width. For instance,
for given T = 20 cm and B = 55 μm, the beam width should be
less than Amax = 8.75 μm to guarantee the stable propagation in
one period. Considering the edge diffraction effect, we conduct
our investigations on the oscillated self-similar beam by setting
A = 5 μm, T = 20 cm, and B = 55 μm. The theoretical and
experimental results are shown in Fig. 4. The variation of the

FWHM of the beam basically follows the theoretical and simu-
lated curves during propagation. Even though there are some
local deviations, the beam width follows a sinusoidal variation
overall. Notably, the simulated result also deviates from the ideal
sinusoidal curve [see Fig. 4(c)], of which the maximum relative
error is ∼4.5%. This indicates that a more complicated beam
width variation has a larger error caused by the nonlinearity
of the transverse-longitudinal mapping. In specific calculations,
we improve the computing accuracy, and obtain similar simu-
lated results, while the errors still are inevitable. Additionally, as
shown in Figs. 4(d)–4(f), the intensity cross sections at different
propagating distances demonstrate that the produced beam can
persist with the Bessel profile during propagation. Note that the
beam width oscillation is only shown in one period. To achieve
the oscillated beam width at a longer distance, we need increase
the parameters T or B, or reduce A, according to Eq. (6).
Finally, we show that the proposed method of constructing a

self-similar beam is applicable not only for zeroth-order Bessel
beams (m = 0), but also for higher-order ones (m ≠ 0). Thus, we
can generate a vortex Bessel-like beam with any integer order
and adjustable beam width. Specifically, for a vortex Bessel-like
beam, the beam width can be expressed as the radius of the first
ring lobe (i.e., the distance from the origin to the location of the
peak intensity) described by W�z� = Xm=kr�z�. Here, Xm is a
proportional coefficient determined by the order of the Bessel
function m. Generally, X1 = 1.841, X2 = 3.054, and X3 = 4.201.
We experimentally demonstrate first- to third-order self-similar
vortex Bessel-like beams Jm�F�r�� with a sinusoidally varied
beam width. The variation functions of the beam widths are

Fig. 4. Same as in Fig. 3 but for sinusoidal beam width.

Fig. 5. Propagation process of first- to third-order self-similar vortex Bessel-like beams with sinusoidally varied beam width; (a)–(f) side view of the simulated and
experimental propagation process; (g)–(i) corresponding beam width versus propagation distance.
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identical to that in Fig. 4. The corresponding phases Φ�r� are
calculated with Eqs. (2)–(4), but replacing 2.25 by Xm in
Eq. (2). The simulated and experimental results are shown in
Fig. 5 and are basically consistent with the theory. Notably,
the asymmetry intensity profile of the experimental results is
attributed to the errors of the experimental system arising from
generation and detection. Yet the measured beam width [see
Figs. 5(g)–5(i)] coincides well with the theory.

4. Conclusion

In conclusion, based on transverse-longitudinal mapping, we
show the generation of self-similar Bessel-like beams of arbitrary
orders with tunable stretching profiles during propagation and
the constraint on the beam width function. We experimentally
demonstrate three types of typical self-similar Bessel-like beams
with width variations that can be described by linear, piecewise,
and periodic functions of propagation distance, respectively.
The experimental results match well with the theoretical predic-
tions when the beam width function satisfies the constraint. The
proposed approach also enables the generation of self-similar
higher-order vortex Bessel-like beams. We expect the proposed
method can be also applicable to other nondiffraction beams
containing the conical wave vector. The above results would
be of benefit for exploring applications in optical manipulation
of microparticles and optical imaging.
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